The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries
نویسندگان
چکیده
منابع مشابه
The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries
We show how a number of NP-complete as well as NP-hard problems can be reduced to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We consider power queries which are derived from the propagator of a system evolving with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator. We use results of our earlier paper concering the complexity of the S...
متن کاملClassical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem
We study the approximation of the smallest eigenvalue of a Sturm-Liouville problem in the classical and quantum settings. We consider a univariate Sturm-Liouville eigenvalue problem with a nonnegative function q from the class C2([0, 1]) and study the minimal number n(ε) of function evaluations or queries that are necessary to compute an ε-approximation of the smallest eigenvalue. We prove that...
متن کاملSturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter
This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.
متن کاملOn the complexity of the multivariate Sturm-Liouville eigenvalue problem
We study the complexity of approximating the smallest eigenvalue of −∆+ q with Dirichlet boundary conditions on the d-dimensional unit cube. Here ∆ is the Laplacian, and the function q is nonnegative and has continuous first order partial derivatives. We consider deterministic and randomized classical algorithms, as well as quantum algorithms using quantum queries of two types: bit queries and ...
متن کاملSturm-liouville Eigenvalue Characterizations
We study the relationship between the eigenvalues of separated self-adjoint boundary conditions and coupled self-adjoint conditions. Given an arbitrary real coupled boundary condition determined by a coupling matrix K we construct a one parameter family of separated conditions and show that all the eigenvalues for K and −K are extrema of the eigencurves of this family. This characterization mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information Processing
سال: 2006
ISSN: 1570-0755,1573-1332
DOI: 10.1007/s11128-006-0043-0